
LiveInventor: An interactive development environment
for robot autonomy

Charles Neveu, QSS Group, Inc
neveu@artemis.arc.nasa.gov

Mark Shirley, NASA Ames Research Center
shirley@ptolemy.arc.nasa.gov

MS 269-3
NASA Ames Research Center

Moffett Field, CA 94035-1000 USA

Keywords robotics, autonomy, physically-
based simulation

Address correspondence to:
 Charles Neveu, MS-269 NASA Ames
Research Center, Moffett Field, CA, 94035-
1000 USA
Phone: 650-604-2525 FAX: 650-604-4036

Introduction
LiveInventor is an interactive development
environment for robot autonomy developed at
NASA Ames Research Center. It extends the
industry-standard OpenInventor graphics
library and scenegraph file format to include
kinetic and kinematic information, a physics-
simulation library, an embedded Scheme
interpreter, and a distributed communication
system.

Background and motivation
Reliable, robust autonomy is crucial for long
distance and long duration unmanned
exploration of the Martian surface, but
autonomy is difficult to put on mission for a
number of practical reasons. Like any
engineers, autonomy developers require a
platform on which to test and debug their
product. For Mars missions this generally
means one of two unique, identical rovers: one
that flies and one that stays on the ground,
shared by all hardware and software teams for
test and simulation. Autonomy development
and testing generally needs a complete,
operational rover and must wait for all other
teams to complete their work before really
being able to begin theirs. Operating the rover
in a sandbox for autonomy development and
testing is an expensive, labor-intensive and
time-consuming proposition. Even then, a
duplicate rover in a sandbox is only an
approximation of a rover in Martian gravity,
atmosphere and soil. Compounding the
problem is nature of the Mars launch window.

The heavens impose the hardest of deadlines: a
mission can only be launched during a short
window every 26 months and projects must
meet this schedule at all costs. If there are
delays in the project's critical path the only
alternative is to cut things at the end; fallback
modes in which the rover can operate without
autonomy are always provided for in case
autonomy fails or the schedule slips; these
become the mission baseline.

One part of the solution to this
problem is to enable autonomy development
much earlier in the process, early enough to
influence the final design. The purpose of
LiveInventor is to provide a software
environment in which rovers can be very
quickly modeled, and their physical interaction
with the world simulated and visualized, at a
level of abstraction appropriate for autonomy
developers, with accurate masses, joints,
actuators, sensors, terrain, gravity and
atmospheric conditions.

Another part of the solution is to
increase the number of autonomy developers
available to work on the problem. LiveInventor
has been assembled from open-source and
COTS components so that it can be easily and
cheaply distributed to academic institutions,
enabling professors and students to easily
develop software for NASA-relevant challenge
problems.

Architecture of LiveInventor
LiveInventor is an application that integrates a
physically-based simulation library with a 3-D
rendering environment, a scripting language,
and a distributed communication system,
packaged within a graphical user interface.
LiveInventor was built by extending
OpenInventor, the graphics library developed
by SGI [1]. Inventor models three-dimensional
solids using a scenegraph, an ordered acyclic
graph in which nodes represent graphics
entities or operations. Actions (loading a
scenegraph from a file, rendering the

scenegraph, searching it) are accomplished by
traversing scenegraphs and changing state as
each node is traversed. LiveInventor extends
the set of nodes defined by Inventor by
introducing nodes that represent kinematic and
kinetic parameters like mass and inertia tensor,
constraints (joints) between bodies like hinges
and springs, geometrical collision models that
may differ from the rendered graphical models,
and material types and their interactions like
friction and collision elasticity. LiveInventor
follows OpenInventor’s rules for extending the
node and state definitions, so LiveInventor
nodes behave just like regular OpenInventor
nodes, e.g. they are read in with the standard
read-from-file command, they are written with
the standard write-to-file command, etc. Also,
the node definitions can be compiled to a
dynamically linked library (DLL) so they can
be linked into any existing inventor
application.

Scheme-coded
Agent

Agent

Rover model

Scheme
interpreter

Extensions to
OpenInventor

Communication

OpenInventor

Physics
simulation

OpenGL

LiveInventor Architecture

When the LiveInventor nodes are
loaded they cause the appropriate dynamic
mass objects, constraints, collision models and
materials to be created in the physical
simulation world. The physics library used in
LiveInventor is currently Vortex, sold by
Critical Mass Labs.
Autonomy developers can use the embedded
Scheme interpreter to communicate with the
simulated rover or the environment without
having to compile and link C or C++ code.
LiveInventor uses the Gambit Scheme library
[2]. Gambit is written in C and includes both a
Scheme interpreter and Scheme-to-C compiler,
making it very easy to call Scheme code from
the C++ environment or call C functions from
the Scheme environment.

Often autonomy developers have
existing systems written in a language other
than Scheme, on operating systems other than

Microsoft Windows NT, and want to develop
and test their code against a simulated rover
without having to either recode in Scheme or
have to link their C/C++ code into a large
executable. Autonomy developers with
existing large systems can use Ensemble, an
open-source publish-subscribe message
passing system from Cornell University to
communicate with the simulated rover and its
environment [3]. Ensemble is robust, has a
small memory footprint, has been ported to
most common operating systems (Windows,
Mac, most UNIX implementations) and has a
simple API.

Design Principles
LiveInventor was designed with a number of
principles in mind. The first was integrate
rather than reinvent, that is, wherever possible
use existing software and file formats rather
than writing our own. Not only does this save
time but it also frees the user from having to
learn yet another proprietary language and/or
file format. LiveInventor’s file format will be
quite familiar to anyone familiar with VRML.
The second principle was to use open source
wherever possible. All components of
LiveInventor are open source except for the
Vortex simulation engine, and we are looking
into developing a version of LiveInventor that
uses an open source simulation engine like
ODE [4]. Using open source makes
redistribution to academic institutions much
simpler. A third principle was to make it
scalable. We wanted it to be easy for
LiveInventor users to throw together a small
mechanical simulation, while still being able to
simulate and render large, complex
environments like the International Space
Station. Our fourth principle was portability
through portable components. All the
individual components compris ing
OpenInventor run on Linux as well as
Microsoft Windows, so porting it to Linux is
just a matter of recompiling and linking on
Linux.

Under the hood
LiveInventor ties together three

different simulation worlds: the dynamics
simulation world, the collision detection
world, and the graphical world. In
OpenInventor 3-D data is represented by a
scenegraph data structure. When a scenegraph
is rendered, an action traverses the tree and
updates global state variables, including the
current transformation. Transform nodes when
traversed modify the current transformation.
LiveInventor extends the transform node by

defining a DynamicTransform node, which
represents a body in space and includes
information like mass, inertia tensor, initial
velocities, etc. in addition to the transformation
matr ix . When they are crea ted
DynamicTransform nodes create a
corresponding mass objects (bodies) in the
dynamics world. Similarly, collision nodes are
extensions of geometry nodes that create
corresponding collision object nodes in the
collision world when they are loaded. A
collision detection node may be associated
with a body, in which case its position is tied
to the body’s position, or not, in which case
they act like bodies fixed in space (the floor of
the simulated world is usually such a collision
node). On each simulation time step, the
physics simulation is stepped forward and the
mass positions are updated. This new position
is propagated to the collision object. A
rendering action is then applied to the
scenegraph. When this action hits the
DynamicTransform node it queries the body in
the dynamics world and updates the transform
node’s position and orientation based on the
new position and orientation of the body. The
DynamicTransform node is then traversed just
like a normal transform node, its
transformation matrix being accumulated into
the global transform. Constraint (joint) nodes
are loaded similarly to DynamicTransform
nodes: they create constraint objects connected
to bodies in the dynamics world. When the
rendering action hits them they do nothing,

unless their graphics representation is turned
on (e.g. for a hinge, a lines are drawn to
indicate the axis of the hinge and connections
to the bodies). Other nodes like
ContactParameter nodes that specify friction
models between bodies set dynamics world

parameters at startup and are ignored during
rendering.

Current customers and future directions
LiveInventor is currently being used by the
Personal Satellite Assistant project to simulate
the interaction of the PSA with astronauts
inside the International Space Station. In this
scenario LiveInventor must simulate the PSA
in real time because it is being controlled by
the same software that will ultimately control
the hardware PSA. The PSA controller
communicates with LiveInventor over
CORBA; integration of LiveInventor with the
CORBA controller took an afternoon.

LiveInventor is also being used to
develop and test diagnostic code for the K9
rover arm. The Model-Based Autonomy group
at Ames is developing a system to perform
mode and parameter estimation to improve the
robustness of rover traverses and instrument
placement. They are using a simulation of the
K9 robotic arm and a workspace or 'mini Mars
yard' surrounding the arm. Its purpose is to
increase access to a limited resource (the single
arm on K9) and to enable the insertion of
faulty components without impacting the main
K9 rover. The team’s ability to achieve both of
these goals can be significantly enhanced
through a software simulation of the arm. A
simulation can be ready earlier and enable
exploration of a greater range of parameter
values, workspace configurations, and inserted
faults at some cost in fidelity.

Potential directions include large-
scale massively parallel simulations to
coevolve hardware and controllers, use by
mission operations to simulate traversals and
tasks to detect potential problems, and
integration of physical simulation and
modeling into a rover's onboard software path-
planning software.

Reference
1. The Inventor Mentor by Josie Wernecke,

Addison-Wesley Publishing Company, New
York: 1994

2. Gambit-C, version 3.0, by Marc Feeley.
May 1998
http://www.iro.umontreal.ca/~gambit/doc/g
ambit-c.ps

3. The Ensemble System, Mark Hayden.
Cornell University Technical Report, TR98-
1662, January 1998

m

m
 T

m
G

 T G

m

Dynamics world Graphics world

mass &
velocity

constraint

updates

 T DynamicTransform
node

graphics node G

4. Open Dynamics Engine v0.035 User
Guide
Russell Smith,
http://opende.sourceforge.net/ode-latest-
userguide.htm

Acknowledgments
This work was performed under NASA
contract CSRDS NAS2-00065.

